EECS 361 Test 2 Topics

- 1) Model periodic signals using Fourier Series
 - a) Complex exponential form, \mathbf{x}_n 's
 - b) Sine/Cosine form, an's and bn's
 - c) Cosine form c_n's
 - d) Determine the fundamental frequency of periodic signals
 - e) Determine DC (average value, \mathbf{x}_0 , \mathbf{a}_0 , \mathbf{c}_0) of periodic signal
 - f) Apply signal symmetry properties to simplify finding a_n 's b_n 's, c_n 's, x_n 's,
- 2) Finding power of periodic signals using Parsaval's theorem
- 3) Draw spectral plots for periodic signals, magnitude spectrum (two sided)
- 4) Determine the output of linear time-invariant systems to periodic input
- 5) Find the Fourier Transform of aperiodic signals
- 6) Find the Fourier Transform of periodic signals
- 7) Find the Fourier Series of a periodic signal using the relationship between Fourier Transform and Fourier Series

$$\begin{aligned} x_{P}(t) &= \sum_{k=-\infty}^{\infty} x(t - kT_{0}) = \sum_{n=-\infty}^{\infty} x_{n} e^{jn\omega_{0}t} \\ x(t) &\longleftrightarrow X(\omega) \\ x_{n} &= \frac{1}{T_{0}} X(n\omega_{0}) \end{aligned}$$

- 8) Apply the Fourier Transform theorems and properties
- 9) Find signal energy using Parsaval's theorem for aperiodic signals
- 10) Determine the Transfer Function of linear time invariant systems $H(\omega)$
- 11) Find the amplitude and phase response of linear time invariant systems
- 12) Determine the output of a system given its input
- 13) Understand the concept of bandwidth and the inverse signal duration/bandwidth relationship
 - First zero definition
 - 3 dB definition
 - Inverse time duration-bandwidth relationship
- 14) Criteria for an ideal linear time invariant system Ideal Filters
 - a) Distortionless transmission $y(t)=Kx(t-\tau)$ $H(\omega)=Ke^{-j\omega\tau}$ for all ω .
 - b) ILPF \rightarrow H(ω)=Ke^{-j $\omega\tau$} over the signal bandwidth
 - c) IBPF, IBRF, IHPF
 - d) If B_{System}>> B_{signal} then minimal distortion, where B_{System}=system bandwidth and B_{signal}=signal bandwidth
- 16) Basic modulation: DSB-SC, DSB-LC (AM), and FDM
- 17) Sampling
 - a) Sampling Theorem
 - b) Sampling rate $f_s > 2B$ (Nyquist sampling rate =2B)
 - c) Spectrum of a sampled signal
 - d) Recovery of x(t) from $x_s(t)$ using an LPF

18) Discrete Time Signals and Systems

- a) Discrete signal notation, e.g., $\{a, b, c, d, ...\}$ then x[0]=c
- b) Discrete Time Signals x[n], u[n], $\delta[n]$, cos($\Omega n + \varphi$), **p**ⁿu[n]

where Ω = the discrete-time angular frequency

- c) Discrete time LTI systems
 - Difference equations
 - ARMA format for difference equations
 - Block diagrams with delay blocks
 - Properties of Discrete Time Systems
 - Linearity
 - Scaling
 - Additivity
 - o Time-invariance
 - Memoryless (static) vs Memory (dynamic)
 - o BIBO stable
 - o Casual
 - Discrete time impulse response, h[n]
- d) Discrete Time Convolution